9 Modern Forensic Science Technologies

Search For Schools


As technology infiltrates every aspect of our lives, it is no wonder that solving crimes has become almost futuristic in its advances. From retinal scanning to trace evidence chemistry, actual forensic technologies are so advanced at helping to solve crimes that they seem like something from a science-fiction thriller.

With all this forensic technology, this field is one of the fastest-growing in the U.S. One way to measure this is in the increased demand for forensic science technicians.

According to the Bureau of Labor Statistics (2021), there will be a 16 percent increase in jobs for forensic science technicians between 2020 and 2030. The BLS indicates that this growth is due to new forensic science techniques that have increased the availability and reliability of objective forensic information. Courts and law enforcement agencies need to hire additional staff to use these techniques to analyze data for use in trials.

Shows like CSI and NCIS have made most of the forensic science techniques used today common knowledge. You might think that virtually the whole gamut of forensic technology is old hat to today’s savvy viewer. In fact, since 2020 there have been over 17,000 scientific publications on new advances in forensic science. Some of these findings are brand new technologies, while others are new ways of analyzing evidence in an established field. Regardless, these innovations are making it harder for criminals to evade detection by forensic scientists.

Here are some of the incredibly cool forensic technologies that you probably never knew existed.

9 Advances in Forensic Science Technologies (2022)

DNA Phenotyping


While DNA gathered from a crime scene can be matched to a suspect by comparing samples, DNA can also be used to determine what a suspect physically looks like. DNA has 23 chromosomes that code outward appearance. Forensic scientists can sequence a DNA sample and provide investigators with identifying traits of the suspect, including hair, eye, and skin color. Newer techniques can also predict age and biological background.


Biosensors for Fingerprint Analysis


Like DNA, fingerprints found at a crime scene can be matched to a suspect by comparing them. However, fingerprints aren’t always clear or readable. Forensic scientists can now use biosensors to analyze the minute traces of bodily fluids found in fingerprints to identify the suspect. Data that can be detected include age, medications, gender, and lifestyle. Biosensors can also be used on other bodily fluids found at a crime scene.




Immunochromatography is a method to test for diseases by dropping a small sample onto a prepared test strip. Results are relatively quick, and common tests that use this technique include COVID, HIV, and even pregnancy tests. In forensics, immunochromatography tests are used to detect substances in subjects’ bodily fluids, such as drugs and medications.

A smartphone-based sensor has even been developed to evaluate a saliva sample through immunochromatography without needing to be in a lab.


Geolocating a Suspect or Victim using Stable Isotopes of Water


Isotopes vary from atom to atom and can have a unique signature. Recent forensic developments have found that scientists can determine where the sample could have originated by isolating the isotopes in a water sample found on a suspect or victim.

If there are several samples, the isotopes can even recreate the path that the subject took. Isotope detection through other methods can also be used to determine the number of people present.


Forensic Palynology


Forensic palynology is a relatively new area for forensic scientists. Palynology is the study of pollen, spores, grains, and seeds and can be used in forensics to identify a subject’s location. Pollen and spores are minute and can be deposited on skin and clothes largely undetected. Scientists have not developed techniques to gather and compare these trace materials and use them as evidence.


Blockchain-Based Solutions: Cloud Forensics


Over 50 percent of personal and corporate data is now stored in the cloud, meaning on remote servers. As a result, digital forensic scientists have had to develop methods for collecting, analyzing, and evaluating data that has been collected from the cloud.

Managing this data presents a number of security and privacy issues. To help protect the integrity of the data as well as maintain a custody chain, digital forensic scientists have begun to use blockchain technology as it is virtually impossible to tamper with.


Digital Vehicle Forensics


Vehicle forensics has typically been an area where investigators gather physical evidence, including fingerprints, fluid samples, and trace materials like dirt. Also, they can physically examine the car to determine how an accident, crash, or terrorist attack occurred.

However, as vehicles have become more technologically sophisticated, it has opened the field of digital vehicle forensics where scientists and investigators can gather data such as recent destinations, typical routes, personal data, and favorite locations.


Social Network Forensics


Over 3.6 billion people are on social networks, and this number is projected to increase to 4.5 by 2025. When social media first emerged, investigators and forensic scientists didn’t have as much data to comb through. Now, the social media data for a particular subject can be daunting.

Recently, to help evaluate this data, scientists have developed models for analyzing the information gleaned from social networks. In order for automated data analysis to be accepted in court, it has to be based on models that are reproducible, explainable, and testable.


3D Technology to Determine Physical Fit


Forensic scientists often receive physical evidence that needs to be pieced back together. This is called physical fit and is a well-recognized method of determining that two pieces are from the same source. This evidence can be a variety of materials, and often they can be relatively fragile such as bones.

A recent study at the University of Portsmouth used 3D imaging to map the exact dimensions of some burnt bones then replicated the pieces using a 3D printer. This enabled them to determine if pieces fit together or not without having to excessively handle the fragile evidence.


Drone Forensics


As of August 2021, there were over 880,000 drones registered with the FAA in the United States. Over 40 percent of those drones are registered for commercial use. The increased popularity of these unmanned aerial vehicles has given criminals a new tool to smuggle drugs, perform illegal surveillance, and attack victims. Forensic scientists are developing methods and models for gathering and analyzing data from drones, SD cards, and cell phones.

Methodology for the Featured Forensic Science Technologies

When deciding which technologies to include on this list, a number of factors were taken into consideration.

  • Relevance to the Topic of Forensic Technology: The said technology must be actively used in the field of Forensic Science and can be taught at the college level. Widely regarded technologies were considered first, while more experimental technologies were included only on the basis of reputable peer-reviewed documentation.
  • Novelty in the Field of Forensic Science: More experimental technologies were given higher priority based on whether the technology gave advanced information that is not readily available by using other technologies. These “cutting-edge” technologies were thoroughly vetted to ensure that they have become accepted techniques by leaders in the field.
  • Reliability of Technology: Finally, only techniques used with more than 80 percent reliability were included in this list. Factors that affect reliability include case closure rate, successful conviction rate, and correct identification rate.

10 Cool Technologies Used in Forensic Science (Pre-2021)

Finally, here is a collection of earlier advances in forensics technologies archived from 2021 and earlier.

Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)

When broken glass is involved in a crime, putting together even tiny pieces can be key to finding important clues like the direction of bullets, the force of impact or the type of weapon used in a crime. Through its highly sensitive isotopic recognition ability, the LA-ICP-MS machine breaks glass samples of almost any size down to their atomic structure.

Then, forensic scientists are able to match even the smallest shard of glass found on clothing to a glass sample from a crime scene. In order to work with this type of equipment in conjunction with forensic investigation, a Bachelor’s Degree in Forensic Science is usually necessary.

Alternative Light Photography

For a forensic nurse, being able to quickly ascertain how much physical damage a patient has suffered can be the difference between life and death. Although they have many tools at their disposal to help make these calls quickly and accurately,

Alternative light photography is one of the coolest tools to help see the damage even before it is visible on the skin. A camera such as the Omnichrome uses blue light and orange filters to clearly show bruising below the skin’s surface. In order to use this equipment, you would need an MSN in forensic nursing.

High-Speed Ballistics Photography

You might not think of it right away as a tool for forensic scientists, but ballistics specialists often use high-speed cameras in order to understand how bullet holes, gunshot wounds, and glass shatters are created. Virtually anyone, from a crime scene investigator to a firearms examiner, can operate a high-speed camera without any additional education or training. Being able to identify and match bullet trajectories, impact marks and exit wounds must be done by someone with at least a bachelor’s of science in forensic science.

Video Spectral Comparator 2000

For crime scene investigators and forensic scientists, this is one of the most valuable forensic technologies available anywhere. With this machine, scientists and investigators can look at a piece of paper and see obscured or hidden writing, determine the quality of paper and origin and “lift” indented writing. It is sometimes possible to complete these analyses even after a piece of paper has been so damaged by water or fire that it looks unintelligible to the naked eye.

In order to run this equipment, at least a bachelor’s degree in forensic science or a master’s degree in document analysis is usually required.

Digital Surveillance For Xbox (XFT Device)

Most people don’t consider a gaming system a potential place for hiding illicit data, which is why criminals have come to use them so much. In one of the most ground-breaking forensic technologies for digital forensic specialists, the XFT is being developed to allow authorities visual access to hidden files on the Xbox hard drive.

The XFT is also set up to record access sessions to be replayed in real-time during court hearings. In order to be able to access and interpret this device, a Bachelor’s Degree in Computer Forensics is necessary.

3D Forensic Facial Reconstruction

Although this forensic technology is not considered the most reliable, it is definitely one of the most interesting available to forensic pathologists, forensic anthropologists and forensic scientists. In this technique, 3D facial reconstruction software takes real-life human remains and extrapolates a possible physical appearance. In order to run this type of program, you should have a bachelor’s degree in forensic science, a master’s degree in forensic anthropology or a medical degree with an emphasis on forensic examination and pathology.

DNA Sequencer

Most people are familiar with the importance of DNA testing in the forensic science lab. Still, most people don’t know exactly what DNA sequencers are and how they may be used. Most forensic scientists and crime lab technicians use what’s called DNA profiling to identify criminals and victims using trace evidence like hair or skin samples.

In cases where those samples are highly degraded, however, they often turn to the more powerful DNA sequencer, which allows them to analyze old bones or teeth to determine the specific ordering of a person’s DNA nucleobases, and generate a “read” or a unique DNA pattern that can help identify that person as a possible suspect or criminal.

Forensic Carbon-14 Dating

Carbon dating has long been used to identify the age of unknown remains for anthropological and archaeological findings. Since the amount of radiocarbon (which is calculated in carbon-14 dating) has increased and decreased to distinct levels over the past 50 years, it is now possible to use this technique to identify forensic remains using this same tool.

The only people in the forensic science field that have ready access to carbon-14 dating equipment are forensic scientists, usually with a master’s degree in forensic anthropology or forensic archaeology.

Magnetic Fingerprinting and Automated Fingerprint Identification (AFIS)

With these forensic technologies, crime scene investigators, forensic scientists, and police officers can quickly and easily compare a fingerprint at a crime scene with an extensive virtual database. In addition, the incorporation of magnetic fingerprinting dust and no-touch wanding allows investigators to get a perfect impression of fingerprints at a crime scene without contamination. While using AFIS requires only an associate degree in law enforcement, magnetic fingerprinting usually requires a bachelor’s degree in forensic science or crime scene investigation.


Kimmy Gustafson

Kimmy Gustafson is a freelance writer and researcher with a passion for sharing stories of bravery. Her love for world-traveling began when her family moved to Spain when she was six and since then, she has lived overseas extensively, visited six continents, and traveled to over 25 countries. She is fluent in Spanish and conversational in French. When not writing or parenting she can be found kiteboarding, hiking, or cooking.